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Abstract 

This paper reviews two relatively new tools for automated formal analyis of security protocols. 
One applies the formal methods technique of model checking to the task of protocol analysis, while 
the other utilizes the method of theory generation, which borrows from both model checking and 
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1    Introduction 

Security protocols based on cryptographic primitives are used today to protect computer systems 
and network transactions from malicious attacks. These protocols have been known to be notori- 
ously hard to design due to their complexity. Many subtle attacks have been demonstrated that 
are difficult to catch by manual analysis alone. There is therefore a need for formal automated 

tools to assist in the design of security protocols. 
Many researchers have recently applied automated and semi-automated formal techniques to 

analyze security protocols. These tools fall into roughly two classes : those based on theorem 
proving (e.g., [4, 10, 6]) and those based on model checking (e.g., [8, 9, 7]). Tools differ in the 
degree of automation and expressiveness; often more automation is traded off against reduced 
expressiveness. Moreover, the assumptions made in modelling protocols make some tools better 
suited than others in catching certain classes of errors. These differences indicate that we might 
find tools that complement each other. 

1.1 Model Checking and Theory Generation 

In this paper, we compare two recently developed automated tools: BRUTUS [8], which is a model 
checker, and RVChecker, which is based on Kindred's theory-generation approach [5]. 

BRUTUS is a model checker specialized to analyze security protocols, with a built-in model 
of the adversary. It uses standard state space analysis techniques to check if the model satisfies 
the specification. If it does not, then BRUTUS comes up with a counterexample showing where 
the specification breaks. Although model checking is almost entirely "push-button" in nature, 
BRUTUS sometimes comes up short in that the protocol might be far too complex to handle due 
to state-space explosion, or the counter-example might be too complicated to understand exactly 
what assumption breaks. Even if these do not happen, it is possible that the protocol breaks only 
when a certain configuration of multiple runs occurs, and there is no way to automatically figure 
out which runs are important for analyzing properties of interest. 

RVChecker is a theory generation tool based on REVERE [6] which is based on belief logics. 
The core idea in this approach is to produce a finite representation of the set of all the facts 
derivable from a protocol specification. Verifying a particular property of interest then simply 
becomes testing for set membership. The advantage of this approach lies in its automation, and 
in the high level handling of security protocol properties, thereby helping the designer fix incorrect 
assumptions about the system and its environment. The obvious disadvantage of this approach lies 
in the difficulty of seeing how failure of certain assumptions can translate into a real attack on the 
system. For a fairly complicated interaction between assumptions, it might be very difficult for a 
human designer to figure out exactly what is going wrong. 

The strengths and weaknesses of these two approaches suggest ways of combination. In the 
remainder of this paper, we study their performance on a suite of two protocols with known flaws. 
We compare the performance of the tools on these two protocols. Based on this, we suggest a new 
method of analysis based on a complementary combination of the two tools. 

1.2 The Protocol Suite 

We ran each of BRUTUS and RVChecker on a suite of two protocols, both of which are known 
to have flaws. This suite includes the Tatebayeshi-Matsuzaki-Newman (TMN) protocol used by 
Kemmerer, Meadows and Millen to compare three analysis tools - the Interrogator, InaJo and 
the NRL Protocol Analyzer [4]. Using this protocol thus serves to provide a baseline comparison 



between the two tools investigated here and the three systems investigated in that article. Our 
suite also includes the buggy namestamping protocol presented by Dolev and Yao (DY) in their 
paper on algebra-based analysis of security protocols [3]. The chosen protocols help to illustrate 
the relative strengths and weaknesses of the two verification approaches. The known attack on the 
Dolev-Yao protocol is achieved by syntactic manipulation of the messages, which indicates that a 
model checking approach that explores all possible operations on messages might catch this bug. 
On the other hand, in the TMN protocol, parties perform key exchange based on beliefs about the 
authenticity of the other party, so it seems that a belief logic based tool such as RVChecker might 

catch errors in this protocol. 

1.2.1     Tatabayeshi-Matsuzaki-Newman Key Exchange Protocol 

The Tatabayeshi-Matsuzaki-Newman (TMN) protocol for key exchange [11], features a server S 

with a public key and two network nodes A and B who wish to exchange a session key through the 

server. The protocol consists of four messages: 

1. A—>S 

2. S—>B 

3. B^S 

4. S —> A 

[S.A.B.{Ra}Ks] 

[B.S] 

[S.B.A.{Rb}Ks] 

[A.S.B.Ra © Rb] 

In the above notation, A —> S : [S.A.B.{Ra}Ks] means that the composite message constructed 
by concatenating S, A, B and Ra encrypted under Ks is sent by principal A to principal S. Rx 
denotes a large random number generated by principal A', and © denotes bitwise exclusive-or. 

After a run of this protocol, A and B use Rb as a session key. The protocol falls victim to several 
attacks. One attack results from properties of the public-key and symmetric encryption algorithms 
used (RSA and XOR), in which a second set of users can capture some of the messages from the 
first protocol instance and trick the server into revealing the key. A second class of attacks results 
from the fact that no authentication takes place in the protocol, so it is possible for an intruder to 
masquerade as any of the other principals in the protocol and disrupt the network by, for example 
learning the session keys of principals or convincing A that he is securely communicating with B 
when in fact he is communicating with Z. These attacks are more clearly outlined in our analyses 

in Sections 2 and 3. 

1.2.2     Dolev-Yao Namestamp Protocol 

Dolev and Yao [3] introduce several simple message transfer protocols with the intent of proving 
them secure or insecure. All of the protocols involve the transmission of a message M from party A 
to party B. The protocol we will analyze here, which has a multiple-run attack, has two messages 

(where Kx indicates the public key of principal A): 

A—+B   :   [A.{{M}Kb.A}Kh.B] 

B^A   :   [B.{{M}Ka,B}Ka,A} 

This protocol is intended to securely transfer message M from A to B, but the double-encryption 
(added to another protocol which Dolev and Yao prove secure against message discovery) allows a 

three-run attack [3]: 

1. Z listens to the first run of the protocol, remembering {{M}Ka.B}Ka from 5's response. 



2. Z initiates the protocol with A, sending 

{Z.{{{M}Ka.B}Ka.Z}Ka.A} 

3. .4 responds, sending Z: 
[A.{{{M}Ka.B}Kz.A}Kz.Z] 

4. Z now knows {M}K(I, SO he initiates another run of the protocol with .4, sending: 

[Z.{{M}Ka.Z}Ka.A] 

5. .4 responds with: 

6. Z now has the message M. 

[A.{{M}Kz.A}Kz.Z] 

Section 2 describes BRUTUS and the analysis of the two protocols using BRUTUS. Section 3 
describes RVChecker and the analysis performed with it. In Section 4 we discuss the results of 
our analyses and in Section 5 we propose a heuristic to combine the two approaches. Finally, in 
Section 6 we offer concluding remarks and suggest avenues for further research. 

2    BRUTUS 

BRUTUS is a model checker specialized for analyzing security and electronic commerce protocols [8]. 
Like most model checkers, BRUTUS is based on an operational description of the behavior of par- 
ticipating agents (in the protocol), based on which, a suitable modal logic is defined. Properties 
expressed in this logic can then be checked against the model using state space analysis. However, 
unlike a "general-purpose" model checker in which the user must specify a finite state model of the 
intruder, BRUTUS has a built-in model of the intruder. 

In this section, we first give a brief overview of how BRUTUS models a protocol and how it 
defines and checks properties of interest. Then, we use BRUTUS to model and analyze the TMN 

and Dolev-Yao protocols. 

2.1     The Model 

BRUTUS specifies that the protocol must follow a particular model. While this allows us to formalize 
the protocol description and check the corresponding logic in a straightforward way, we also lose 

some expressiveness in the process. 
The set M of possible messages in the BRUTUS model of protocols can be defined inductively 

as follows : 

1. If a £ A,a € M, where A is the set of atomic messages, i.e., keys, principal names, nonces 

or data messages. 

2. If ???i € M and m2 G M, then mi.m2 <E M (pairing) 

3. If m e M and key k € A, then {m}k € M (encryption) 



In BRUTUS, the principals need to be explicitly modeled in the protocol, but the intruder need not. 
BRUTUS instead defines a derivability relation, "H", which captures how the intruder can derive a 

message from some initial set of information I. 

1. If m e I then 7 h m. 

2. If 7 h 77?4 and 7 h ?772 then 7 h mi • ?77.2. (pairing) 

3. If 7 h ?77x • ?772 then 7 h mi and 7 h ?7?,2. (projection) 

4. If 7 h 777, and 7 h Ar for key A% then 7 h {m}^. (encryption) 

5. If 7 h {m}fc and 7 h A-1 then 7 h m. (decryption) 

7 denotes the closure of 7 under application of the above rules. 
A protocol is modeled as an asynchronous composition of communicating processes that model 

the honest principals as well as the intruder. The intruder process can eavesdrop on all commu- 
nication and can interfere by dropping, changing or adding new messages in any way; thus the 
communication channel can be thought of as passing through the intruder. The model is made 
finite by imposing a bound on the number of times ("sessions") a principal is allowed to participate 

in the protocol. 
The formal model of an individual principal in a single session is called an instance. Each 

instance H of an honest principal is modeled as a 5-tuple (N, S, I, B, P) where: 

• 

• 

• 

N £   names is the name of the principal. 

S is a unique instance ID for this instance. 

B: vars(N) —Y M is a set of bindings for vars(N), the set of variables appearing in principal 
N, which are bound for a particular instance as it receives messages. 

I C M is the set of messages known to the principal executing the instance S. 

P is a process description given as a sequence of actions to be performed. These actions 
include the pre-defined actions send and receive , as well as user defined internal actions 
such as begin-response and end-response, internal actions can be used to keep track of 
the internal state of an instance. 

The intruder, Z, is not bound to follow the protocol and the intruder process neither includes a 
sequence of actions Pz nor a set of bindings Bz- Instead, at any time, the intruder can receive any 
message or it can send any message it can generate from its set of known messages Iz- 

The states of all processes put together form the global state of the system. Let S be the 
set of global states of the system. The transition relation for the system can be written as —> C 
SxSxixMxS where E is the set of global states, 5 again is the set of instance IDs, A is the 
set of action names (which includes send and receive ), and M is the set of all possible messages. 

A transition of the system from state a to state a' can be represented as a —-> a'. 



2.2    The Logic 

The property of interest is specified in a first order logic with finite quantification and the past-time 
temporal operator. 

We now give the syntax of the logic. Atomic propositions in the logic are instance IDs, in- 
stance variables, message constants and variables, and combinations of these as per the message 
construction rules defined in Section 2.1. A well formed formula (wff) in the logic is defined as 

follows: 

• if / is an atomic proposition, then / is a wff. 

• if / is a. wff, then -1/ is a wff. 

• if /1 and f2 are wffs, then f\ A /2 is a, wff. 

• if / is a wff and .? is an instance variable, then 3s. f is a wff. 

• if / is a wff, then Op/ is a wff. ! 

The semantics of wffs in the logic are defined over the trace of states and actions of the system 
TV = <70ai<7i .. .<7n, and can be given bv the following recursive definition of the satisfaction relation 

• (71-, i) (= mi = ???2 iff 0-,-(7??i) = cr 1(111-2), i.e., the interpretations of the two messages in the ?'th 
state must be the same. 

• The formula (71-, i) (= .s Knows m iff 07(77?) € Ij for some instance Hj in 07 such that Sj — s 

■A-r, 
• (TT, i) |= s A m for some user defined action A iff <r,-_i  -^—>■' 07. 

The usual semantics of \= for boolean and temporal connectives apply. 
Now, if we need to model check a given property p defined in the above logic, we define a fixpoint 

operator corresponding to the temporal operator used. The state space can also be encoded as a 
boolean expression. The fixpoint operator is then applied to a suitable composition of the state 
space expression and the property formula. When the computation reaches a fixed point, we can 
check whether the property holds for our system. If the property does not hold, the resulting 
formula will encode a trace which shows how the protocol can be broken. 

A detailed treatment of model checking can be found in the book by Clarke, Grumberg and 

Peled [2]. 

2.3    Analysis 

We now describe how we used BRUTUS to model and analyze the TMN and Dolev-Yao protocols. 
Each analysis of a property described in this section ran in under a minute on an Intel Pentium 
II 300 MHz machine running Linux. BRUTUS identified some of the flaws in both the protocols 
under consideration, however, it did not identify all of the known flaws due to limitations in its 
expressiveness. 

In the analysis that follows, / stands for the intruder and all other letters stand for honest 
principals or trusted servers. 

:As in propositional temporal logic, Op/ is true at state a,, if 3 some prior state a3,j < i where / holds. 



2.3.1     Dolev-Yao analysis 

The initiating and responding instances of each honest principal are modelled as shown below (each 

corresponds to one session): 

INITIATOR   =   internal ("begin - initiate", b) 

send (a, b, {{M}Kb, a}Kb) 

receive (6, a, {{M}Ka, b}Ka) 

internal ("end - initiate", b) 

RESPONDER   =   receive(a,6, {{M}Kb,a}Kb) 

internal ("begin - respond", a) 

send(b,a,{{M}Ka,b}Ka) 

internal ("ewe? - respond", a) 

In the above descriptions, a and b represent the names of the two communicating parties. 

We checked the following classes of properties: 

• Secrecy: The following property was checked: 

-.(/ Knows M) 

This property comes out to be true when we model less than three sessions of the initiator 
(A) and less than two sessions of the responder (B). But in a case when this does not hold, 
where there are three sessions of A and one of B, BRUTUS finds the exact same attack as is 
described in [3]. Moreover, we find alternative ways of attacking the protocol if the relative 
number of sessions of A and B are changed. One such variation occurs when B listens for 
two sessions and A initiates using one session; the intruder is able to obtain the message as 

shown in Figure 1. 

• Authentication: To check authentication, we checked the following two properties : 

(1) Ma.{a internal ("end - initiate", B)     => 

(3Sb.(Sb.P = J3)A    Op    (Sb.P internal ("end - respond", a)))} 

(2) Vb.{b internal ("end - respond", A)    => 

(3Sa.(Sa,P = A) A   Op    (Sa.P internal ("begin - initiate", b)))} 

We claim these properties are "authentication" properties - the first claims that if A finishes 
initiating a message to a honest principal B, then there is a session in which B responded to 
this message at some earlier point of time. The second claims that if B finished responding 
to a message apparently from A, then it was indeed A who initiated the send of that message 
in some session at some time in the past. Note that these are rather weak conditions of 
authenticity which rely on nametags attached to messages rather than something more secure. 
This arises from the fact that there are no signatures or shared secrets involved in the protocol. 
Properties of this kind have also been referred to as correspondence properties by Woo and 

Lam [12]. 



Intruder I B 

inh(B) 

send(A,B,Kb(A,Kb(M))) 

intercepts message 
send(I,B,Kb(I,Kb(A,Kb(M)) 

recv(B,I,Ki(B,Ki(A,Kb(M))) 

send(I,B,Kb(I,Kb(M)) 

recv(B,I,Ki(B,Ki(M))> 

knows M ! 

recv(I,B,Kb(I,Kb(A,Kb(M)))) 

send(B,I,Ki(B,Ki(A,Kb(M)))) 

recv(I,B,Kb(I,Kb(M))) 

send(B,I,Ki(B,Ki(M))) 

Figure 1: Counterexample showing secrecy flaw in Dolev-Yao 

For a single run of A and B, both properties check out to be true. This happens because / 
is unable to get M through a, replay attack, and so if A or B get the message they expected, 
it must have been legally generated. 

However, if either .4 or B is allowed to have more than one session, then the intruder I can 
replay the message and make sure that A or B completes a session thinking that the message 
which originated from I actually came from an honest principal. One such attack is shown in 
Figure 2. Here we have the same model as in the previous attack, viz., two sessions of B and 
initiation by A. In this case. A thinks that B is talking to her, while B thinks he is talking 
to /, so the authentication property does not hold. 

Intruder I B 

init(B) 

send(A,B,Kb(A,Kb(M))) 

intercepts message 

send(I,B ,Kb(I,Kb( A,Kb(M))' 

recv(B,I,Ki(B,Ki(A,Kb(M))) 

send(I,B,Kb(I,Kb(M)) 

recv(B,I,Ki(B,Ki(M))> 

knows M ! 

• send(B,A,Ka(B,Ka(M))) 

recv(I,B,Kb(I,Kb(A,Kb(M)))) 

send(B,I,Ki(B,Ki(A,Kb(M)))) 

recv(I,B,Kb(I,Kb(M))) 

send(B,I,Ki(B,Ki(M))) 

recv(B,A,Ka(B,Ka(M))) 

Figure 2: Counterexample showing authentication flaw in Dolev-Yao 



Since BRUTUS considers all principals to be honest, we cannot express honesty properties in the 
protocol. This is a limitation in the expressiveness of the specification logic. 

2.3.2    TMN analysis 

In TMN, we have three honest principals: the initiator A, the server S, and the responder B. We 

model these as shown below: 

INITIATOR   =    internal ("begin - initiate", B) 

send (A,S,B,{RA}KS) 

receive (s, A, b, {Rb}Ra) 

internal ("end- initiate",b) 

RESPONDER   =   received. B, a) 

internal ("begin - respond", a) 

send(_B, s, a, {RB}KS) 

internal("en(7 - respond", a) 

SERVER   =    receive(a, S, b, {Ra}Ks) 

internal("begin - initiate", b) 

send(6, S, a) 

receive(6, S, a, {Rb}h's) 

internal ("end - initiate", b) 

internal ("begin — respond", a) 

send(S, a, b, {Ra}Rb) 

internal("enrf — respond", a) 

In the above model, small letters (such as a) are used in place of principal names (such as A) to 
indicate that the party represented by the letter p may not be the principal P, but some other 

party Q playing the role of P. 
The current version of BRUTUS requires secret keys generated by A and B to be represented 

as symmetric keys, with a symmetric key for I. This representation allows 7's key to replace that 
of A or B wherever I replaces A or B. However, representing secret keys in this manner ties the 
key to the principal name for a given message. Thus, if I attempts an attack in which it replaces a 
principal's name with its own (masquerading as that principal), it also effectively changes the key, 

often rendering the attack ineffective. 
We checked the following classes of properties: 

• Secrecy: We want to check if the shared secret RB remains a secret from the Intruder /. More 
formally, we want to check the following two properties: 

(1) :    -i(7 Knows RB) 

(2) :    -.(/ Knows RB) A -.(/ Knows RA) 

The first property means that I cannot read messages passed between A and B The second 
property means that in addition, I cannot masquerade as S while communicating with A. 



BRUTUS finds both properties to be false. First, if the intruder is allowed to take on the role 
of the server (i.e., the name "I" can replace "Sr in messages), then a very simple attack is 
possible, as shown in Figure 3.   If we assume that the intruder cannot masquerade as the 

A I S I B 

init(B) 

send(A,S,B,(Ra)Ks) 

■** recv(A,S,B,(Ra)Ks) 

send(I,B,A)  
-*- recv(I,B,A) 

knows( (Ra)Ks ) .._ T . ,_, .„..  -- send(B,I,A,(Rb)Ki) 

recv(B,I,A,(Rb)Ki) 

knows(Rb) 

^ ■ send(I,S,A,(Ri)Ks) 

recv(I,S,A,(Ri)Ks) 

_-___ send(S,A,I) 

recv(S,A,I) 
send(A,S,I,(Ra)Ks) 

"""""-^ recv(A,S,I,(Ra)Ks) 

send(S,I,A,(Ra)Ri) 

recv(S,I,A,(Ra)Ri) 

knows(Ra) 

Figure 3: Counterexample 1 showing secrecy flaw in TMN 

server, then we can still find an attack. With a single session of S we are only able to find 
an attack that allows I to discover RB, but with two sessions of S, I can also find RA- This 
latter attack is shown in Figure 4. 

• Authentication: We check the same authentication properties as for the DY protocol. How- 
ever, in this case, BRUTUS deems both properties to be true. This is because it is not possible 
for BRUTUS to represent the secret key of / with the principal name of B in the same message 
as discussed earlier. 

• Multiple Intruder Collusion: Simmons describes an attack on the TMN protocol (described 
in [11]) in which the homomorphic property of the keys is used. In essence, the key used 
in a single valid run of the protocol is replayed by two colluding intruders (who could be 
two different sessions of the same intruder). Since this attack depends on the homomorphic 
property of keys, which cannot be expressed in BRUTUS, BRUTUS fails to catch this flaw. 

3    RVChecker 

RVChecker is a protocol analysis tool inspired by the tool REVERE developed by Kindred [6]. 
REVERE features two new techniques: theory generation and the RV logic, an extended BAN-style 
belief logic [1]. Combining these features results in a tool that is fully automatic; given a protocol 
specification no further action is required by the user to analyze the protocol. Whereas REVERE is 
written in SML, the paper's first author developed RVChecker entirely in Java, so it is also portable 
to any platform for which there is a JVM available. 

9 



A I 

init(B) 

send(A,S,B,(Ra)Ks) 

^~"~*" recv(A,S,B,(Ra)Ks ) 

send(S,B,I) ■ 

B 

knows( (Ra)Ks) 

recv(B,S,I,(Rb)Ks) 

knows( (Rb)_Ks ) 

■ send(I,S,B,(Ri)Ks) 

recv(S,B,I) 

• send(B,S,I,(Rb)Ks) 

recv(I,S,B,(Ri)Ks) 

■ send(S,BJ) 

recv(S,BJ) 
send(B,S,I,(Rb)Ks) 

">>,>*>» recv(B,S,I,(Rb)Ks) 

send(S,I,B,(Rb)Ri) 
recv(S,I,B,(Rb)Ri) 

knows(Rb) 
■ send(I,S,A,(Ri)Ks) 

recv(I,S,A,(Ri)Ks) 
——— send(S,A,I) 

recv(S,A,I) 
send(A,S,I,(Ra)Ks) 

**"'»"■ recv(A,S,I,(Ra)Ks) 

send(S,I,A,(Ra)Ri) 

"^~~*" recv(S,I,A,(Ra)Ri) 
knows(Ra) 

Figure 4: Counterexample 2 showing secrecy flaw in TMN 

3.1    Theory Generation 

RVChecker employs Kindred and Wing's theory generation for reasoning about small theories in 
limited logics [5]. Theory generation is a syntactic method of theorem proving based on a saturation 
approach. The concept is to produce a finite representation of a (possibly infinite) theory generated 

by a set of rules and assumptions. 
Their approach divides the rules of a logic into "shrinking" and "growing" rules (as decided by 

any well-defined measure) and repeatedly applies only the shrinking rules, essentially guaranteeing 
that the process will come to a halt. Then to test whether a specific formula is a consequence of 
the rules and assumptions, a backward-chaining search over the growing rules is applied, which 
will also guarantee termination. The sufficient condition for termination provided by Kindred and 
Wing is the restriction that a shrinking rule must still shrink even when all of its premises that can 
be met by the conclusion of a growing rule are removed. 

A consequence of this condition is that given a set of rules and a candidate measure, it is 
possible to automate the process of checking a logic for termination under theory generation. This 
allows the development of a general-purpose theory generation algorithm that can automatically 
prove any judgement of any logic that satisfies these termination conditions. Both REVERE and 
RVChecker implement this algorithm, formally described in Kindred's thesis [6]. 

10 



In addition to being fully automatic, this algorithm has the potential to be quite fast; in his the- 
sis, Kindred gives figures for the analysis of several security protocols under several different logics; 
the longest analysis took REVERE 50 seconds to complete on a 500 MHz processor. RVChecker was 
not designed with processing speed as a primary consideration; the protocols analyzed here took 
on the order of 5 minutes to check on a 500 MHz Pentium III. 

3.2    RV logic 

RV is a belief logic developed by Kindred [6] with a core similar to the Burrows-Abadi-Needham 
(BAN) logic of authentication [1]. The innovations of RV lie in its rules for responsibility and a 
technique of explicit interpretations. The belief rules of RV are essentially the same as those of BAN 
and will not be discussed here; the responsibility properties attempt to account for the possibility 
of irresponsible behavior on the part of the principals of the protocol, while explicit interpretations 
represent an attempt to address the dangerous idealization step necessary to analyze a protocol 
using the BAN logic. In this section we will describe RV rules in terms of the symbols listed in 
Table 1, for consistency with the notation of Kindred [6]. (So, for example, the first rule in Figure 5 

reads 'If P sees M, then P sees M'".) 

Notation Meaning 

P <d M P sees M 

P |« M P savs M 
P |~ M P said M 
P \=M P believes M 

Q^R K is a shared key between Q and R 
K ^ K is Q's public key 

{*}K Message X, encrypted under key K 

Q^R Y is a. shared secret between Q and R 
P controls A P has jurisdiction over A" 

U(A') A" is "fresh", that is, "random'" or "new'" 

Table 1: RV symbols 

3.2.1     Explicit Interpretation 

BAN-style protocol analysis necessarily involves generating idealized versions of the messages in a 
protocol and doing analysis on these idealized protocols rather than the concrete protocols intended. 
The risk is that the idealization might contain hidden assumptions about the relative safety of a 
message; BAN fails to consider other possible interpretations of the same concrete message. 

RV addresses this by introducing a syntax for concrete protocol messages; the protocol is ana- 
lyzed using the actual concrete messages intended for implementation, along with "interpretation" 
rules that allow for the explicit idealization of the protocol. Kindred severely restricts these inter- 
pretation rules to prevent invalidating the rules of the logic [6]. 

An interpretation rule must match one of the patterns shown in Figure 5. In addition, the 
concrete message M cannot contain any variables specific to one instance of the protocol, and may 
not contain any functions other than concatenation; the idealized meaning M' may not contain 
protocol instance variables or the encrypt function: and no concrete message may match more 
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P<M P |= Q |~ M    P\=Q M 

P < M'    P\=Q\~ M'    P |= Q |« M' 

Figure 5: RV Interpretation rule patterns. Here M matches all or part of a concrete message, while 

M' represents its intended meaning 

than one interpretation rule for a given protocol. This approach allows the explicit statement of 
how the protocol is being idealized, and placing these restrictions on the interpretation rules means 
that they can be automatically checked, pointing out dubious idealizations to the user. 

Since nonces are not always used merely for freshness or randomness, but are also used to stand 
in for longer pieces of information, RV also allows nonce-binding operations to be included in the 
premises of the interpretation rules; we do not use this feature of the logic for either of the protocols 

evaluated here. 

3.2.2    Responsibility 

The RV logic also introduces the notion of responsibility in protocol analysis. Here the concept 
is that RV analysis allows one to determine whether or not the principals involved in a protocol 
are acting responsibly, as defined by two properties: honesty and secrecy. Roughly speaking, the 
honesty property requires that a principal believe any possible interpretation of a message he sends, 
while the secrecy property requires a principal to believe that it is safe for any intruder to see all 
of the data sent in a concrete message. RV derives these properties through the legit and maysee 
operators and rules described here. 

Original interpretation rule Corresponding legit rule 

P\=Q\tz M 

P |= Q |« M' 
Q = M'    Q |= signed (M, Ms, P, Q) 

Q |== legit(Ms) 

P \=Q |~ M 
P |= Q |~ M' 

Q = M'   Q |= signed(M, Ms,P,Q) 
Q |= legit (Ms) 

P < M 
P < M' 

Q \= M' 
Q |= legit (M) 

Table 2: Honesty rules corresponding to protocol message interpretation rules 

The legit operator works in conjunction with the interpretation rules introduced in the previous 
section; when analyzing a protocol, for each interpretation rule, a. corresponding rule is introduced, 
according to the proper rule from Table 2. The RV logic also has rules that allow one to derive that 
the encryption of a legitimate or honest message is also honest, and the concatenation of two honest 
messages is honest. It introduces a concept of signed messages, with the idea that any message 
encrypted under a private or shared key or combined with a shared secret is signed. Then to check 
the honesty of a principal P in connection with a given concrete message M, it suffices to derive 
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A' P< h Q    K\ = A"-1 

P |= Q maysee A' P \= Q maysee Y       P |= Q maysee A"2 

P<Q^R P«Q = R 

P <l Q maysee Y P<Q<Y P \= Q maysee A' 

P \=Q maysee Y P \= Q maysee Y     P |= Q maysee {X}K 

P |= Q maysee (A', Y P<&Q P \= Z maysee A" 

P |= Q maysee A"        P \= Z maysee A"        P |= Q maysee X 

P \=Q maysee A'    P |=H> Q     P \= Q maysee A"    P |= Q maysee Y 

P |= Z maysee {A"}/v- P \=Q maysee [X.Y 

P \=Q maysee A'    P \= R maysee A    P |= Q <—> R 

P |= Z maysee {A'}A- 

Figure 6: RV's maysee rules 

P |= legit (M) [6]. 
The maysee operator communicates that it is acceptable for a. given principal to see a. piece of 

information. RV's maysee rules specify that if information is public, then any principal believes 
that, any other principal may see it; a principal is allowed to see anything he or she has already 
seen before; a principal may see anything that an intruder may see. and so on. For a complete list 
of RV's maysee rules, see Figure 6. To check secrecy properties in RV, the protocol analyst adds 
a. principal 7" (the Intruder) and checks that for each message M and sender S, S |= I maysee M 

[6]. 

3.3    RVChecker Protocol Analysis 

Protocol analysis with RV and theory generation involves several phases: 

1. A specification is supplied, consisting of a set of messages between principals, a set of inter- 
pretation rules conforming to the restrictions listed above, a list of the principals involved, a 
set of belief goals for the protocol, and a set of initial assumptions about the beliefs of the 

principals involved. 

2. Theory generation is applied to the initial assumptions to generate T0, the consequence closure 
of the assumptions under RV. 

3. For each message AA- with sender 5; and recipient i?,-, the formula. £,<M; is added and theory 
generation is re-applied to compute the theory Tj. 

4. Secrecy is checked: 5, |= I maysee A/, G Ti-\. 
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5. Honesty is checked: S; |=  legit (M,) G T,-_i. 

6. For each belief goal g, check that g £ Tn, where n is the number of messages. 

In this section, we give the results of protocol analysis for the selected suite. 
RVChecker identified flaws in both the DY and TMN protocols; here we present the analysis 

of each. The suite nicely points out some weaknesses of the RV approach, as well as its strengths; 
for example, we were able to find flaws through an inability to meet belief goals, but discovering 
these flaws required extensive familiarity with the RV logic to isolate the necessary (or flawed) 
additional assumptions. In addition, knowing that some dubious assumptions are necessary does 
not necessarily indicate how an attacker can take advantage of these assumptions - while in these 
cases we knew of the attacks a priori, in actual analysis using RVChecker on other protocols this 

will not in general be the case. 

3.3.1     Dolev-Yao analysis 

RVChecker can quickly identify one fault in the DY protocol: it provides no authentication. One 
might assume that desirable belief goals for DY would be "B believes it is A who says M," and "A 
believes B says that it is A who says M" (formally, A \= B |ra (A |« M)), however, since there 
is no signature and no previous shared secret of any sort, this belief-oriented set of goals cannot 
be achieved. In any case, the main goal of the protocol as introduced by Dolev and Yao is secrecy, 
so the belief goals can be weakened to the "seeing" goals "B sees that A said M" and ".4 sees 
that B sees A said M", while we analyze the honesty and secrecy properties of the protocol. Even 
these further weakened goals cannot be reached without breaking an interpretation rule restriction: 
because RV and RVChecker do not allow compositional rules, there is no way for a principal to 
derive that when she sees [A'.{V}A'] and has the key K, then she sees X and Y together in the 
same message. Thus our interpretation rules include encryption and specify protocol principals (so 
that we may connect the encryption key with the principal who may decrypt it): 

B<[{X}Kb.Q]        A<[{X}Ka.Q] 
B<Q\~X      A<{Q<(A\~X)) 

With these interpretation rules and the proper public key belief set: 

.   i    Ka    . .   i    Kb  T-, 
A |=H> A    A |=i-» B 
n  I    Ka   A       n  i    Kb  j-, 
B |=i->- A    B |=i-> B 

RVChecker finds that the "seeing" goals are satisfied. 
The honesty goals require additional assumptions to be met. The first required assumption is 

that A \= A |~ M, which is necessary to assume because only the recipient sees the message in 

RVChecker's analysis. We also require the assumptions: 

A |=  legit {A)     A |=  legit (B) 
B |=  legit (A)    B |=  legit [B) 

in order to get around the fact that namestamps rather than keys are used to provide authentication. 
With these assumptions, it is easy to derive the appropriate legit belief for the first message. 
After the first message, B < A |~ M can be used to derive 

B 1= B < A |~ M 
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which allows us to derive the   legit   properties for the second message. 
The secrecy goals are also met, requiring only two assumptions: A \= B maysee M, which 

seems obvious since A is sending AI to B; and B |= A maysee AI, which seems reasonable once B 
sees that A |~ AI. With these assumptions, RYChecker easily derives that the secrecy properties 

hold. 
The DY protocol, however, was designed to have a secrecy flaw; thus our results represent either 

a shortcoming of RV*s secrecy rules (meaning they are unable to account totally for multiple-run 
attacks) or an invalid assumption. The assumption that B \= A maysee AI allows the secrecy 
check to succeed for the second message; without it, B cannot derive that / maysee {AI}iK-a. Thus 
it might be tempting to conclude that this assumption is invalid; however, Dolev and Yao also 
give an example of a protocol with perfect secrecy, for which this assumption is required for RY to 
derive the secrecy properties. This shortcoming is a result of a conscious design decision by RY's 
creator which results in a conservative approach to secrecy; thus sometimes these rules will lead 
to the conclusion that a secrecy flaw is present when in fact none is. Here the secrecy flaw comes 
both from lack of authentication and double encryption, but RY's rules do not allow us to isolate 
the double encryption as a source of the flaw. 

3.3.2     TMN analysis 

Through analysis with RYChecker we were able to find belief and responsibility errors in TMN. 
Since TMN is a key-exchange protocol, we start with the belief goals. Generally, we would like to 
have both A and B believe that Rb is a shared key between them, and further we would like both 
principals to believe that the other principal shares their belief, resulting in the goals: 

. A     Rb      r, r>   I A      Rb      n 
A |= A <—> B B |= A <—► B 

A\=B\=AAB    B \= A |E.4ÄB 

Since there is no direct authentication in this protocol, however, the bottom two goals are impos- 
sible, so we will settle for the goals: 

A   i        A     Rb     y-,       r-,   i .     Rb     ,-,       r,  I .     Rb     j-, 
A |= A <—> B    B \= A <—> B    S |= A <—> B 

We also have a problem in that, as specified in Section 1.2.1, any interpretation rule which matches 
message 1 or 3 will match both, yet they have different interpretations; to solve this problem we 
add tags REQ and RSP to these messages (which simulate the state that 5 would have to maintain in 
the concrete protocol). If we try to write the interpretation rules now, we find one more problem: 
as with DY, RY is unable to derive that if a principal sees [A~.{y}/V-], then that principal sees 
(A', Y). Thus in our idealization step we have already identified one potential attack: an attacker 
can change the names in the messages being passed around without changing the keys; thus he 
could change a. message from A to S to say [S.A.I....] rather than [S.A.B ]. To fix this problem, 
we encrypt the entire contents of messages 1 and 3 rather than just the keys: 

A —► S    :    {[REQ.S.A.B.Ra]}Ks 

B —► S    :    {[KSP.S.B.A.Rb]}Ka 

Then our interpretation rules for these messages are relatively straightforward: 

P<t [REQ.P.Q.R.K]    P< [RSP.P.Q.R.K] 

P<iP^Q P<Q|KQÄä 
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However, since the specification of TMN calls for bitwise exclusive-or encryption in the final mes- 
sage, we cannot modify it to encrypt the entire contents. Instead, we will break the restriction that 
an interpretation rule cannot include any protocol instance variables, which is reasonable because 

in any single run, A only expects to get a key for one person: 

P |= S |« A' 

P |= S |« P Ä B 

Note that in this rule, ,5' refers to a protocol constant, the server S. 
To check our belief goals, we require several assumptions. Besides the jurisdiction assumptions 

(involving which principals are allowed to control the keys used by other principlas) necessary, the 

interesting assumptions are 
.   I .     Ra     r, 

A |= A <—► 5 

and 
B |= A <—> B 

since A and B are responsible for generating these keys. The second of these assumptions satisfies 
our second belief goal. To satisfy our first belief goal, however, we require an additional assumption, 

which points out a second attack. For A \= A i—> B, we must infer the following sub-goals: 

DJ, 

A |= S controls A f—■> B 

A |= S |« A i—> B 

The first sub-goal is the obvious jurisdiction assumption. The second sub-goal can be derived 
through our interpretation rule, if we can infer A |= ,5* |« Rb. This inference requires the assumption 
A |= tt(i?&); that is, A must assume that Rb is freshly generated. In fact, this points to the attack 
found by Simmons [11] in which two collaborating intruders use keys which are not fresh to find 

A's key. 
fib 

The final belief goal is also a source of difficulty: to derive S \= A i—> B, we need to infer that, 

for some P: 
S \= P controls A <—> B 

S |= P |« A Ä B 

Given the definition of the protocol, it is a reasonable assumption that P = B, since B generates Rb. 
fib 

We end up with an authentication problem, however: while we can derive that S <B |« A i—> B, 
the protocol does not have sufficient public key architecture for authentication.   Thus there is 

fib 
no way for S to become convinced that B |« A <—■¥ B. This seems to correspond again to a 
masquerading attack, in which the intruder I poses as B and convinces A that he shares a key with 

B rather than /. 
When checking responsibility, we find that under reasonable assumptions the first three messages 

(as modified) will satisfy honesty, while because of the belief problem above, the fourth message 
Tib 

cannot satisfy the honesty property, since A will interpret S's message as meaning S |« A <—> B, 
and S does not believe this. Thus RV affords two opportunities to find this error (although we 
admittedly added the third belief goal only because we suspected that its failure lead to the failure of 
the honesty check for the final message). Similarly, the secrecy property fails for the final message, 
because since S is not convinced that Rb is really a shared key for A and P, the maysee rules do 

not allow us to infer that S |= A maysee Rb. 
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4    Comparison 

In this paper we have highlighted the approaches of two fully-automated protocol analysis tools, 
BRUTUS and RVChecker, by presenting their analyses of two cryptographic protocols. Since both 
tools found flaws in both protocols, we attempt to sort through the advantages and disadvantages 
of each. In the next section, we suggest a heuristic for their combination, exploiting the advantages 

of both. 
BRUTUS and RVChecker both represent fully-automated protocol analysis techniques; that is, 

given a specification, neither tool requires further intervention from the user to complete its analysis, 
in contrast to the tools examined in [4]. The speed of both approaches also allows a more interactive 
approach in that the protocol and assumptions can be changed and the results analyzed (relatively) 
quickly - but both tools require significant knowledge of the underlying model used in analysis; 
BRUTUS for the specification of security properties and RVChecker for the interpretation of analysis 
results. 

System Dolev- 
Auth 

Yao Flaws 
Secrecy 

TMN Flaws 
Auth/Secrecy    Simmons/Key 

RVChecker YES NO YES YES 
BRUTUS YES YES YES NO 

Table 3: Results of protocol analysis. YES indicates that the system identified the flaw. 

Table 3 summarizes the results of our comparison. It is interesting to note that while both 
BRUTUS and RVChecker found flaws in the TMN and DY protocols, the type of flaws found by 
each were somewhat different. For example, while both tools identified the authentication failure in 
TMN, RV was able to suggest, without any specific knowledge of the encryption schemes used, that 
it may be possible to attack the protocol with non-fresh session keys. And for DY, RV identified 
an authentication flaw but even with a reasonable assumption (which holds for a slightly modified 
but secure version of the protocol) was unable to identify the security flaw that BRUTUS easily 
identified. Therefore, while it might be tempting to claim that each tool always identifies certain 
types of flaws, we can see from this small set of protocols that neither tool consistently identifies 

the same types of flaws. 

5    Combination 

In addition to having the advantage of catching more flaws when used in combination, the theory 
generation and model-checking approaches seem to present a certain complementarity. Analysis 
using theory generation and belief logics, as implemented in REVERE and RVChecker, allows the 
identification of critical assumptions which allow or prevent a protocol from meeting its belief goals 
or from passing honesty or secrecy checks. Without prior knowledge of protocol flaws, however, 
it may be difficult to see how the failure of an assumption can be marshalled into an attack; 
further, as in the case of the DY assumptions, it may be difficult to identify which assumptions are 
questionable. Using model-checking, as in BRUTUS, yields actual attacks, but especially for lengthy 
counterexamples, it can be difficult to discern why the attack works, or what assumptions about 
the protocol are being violated. 



5.1 A Motivating Example 

As an example, in the RVChecker analysis of DY, we were able to find that the secrecy property 
fails if B does not believe that A maysee M; however knowing that this is a crucial assumption 
does not give us any knowledge of how an attacker might take advantage of it. On the other hand, 
with our knowledge of how the attack works, BRUTUS was quickly able to find an attack which 
yielded the message; however this does not give us a high level explanation of why the protocol 
might have failed. Using RVChecker and BRUTUS in combination, we see that the protocol fails 
because B \= A maysee M and we are given an example of how this flaw can be utilized to yield 

an error. 
Further, the fact that RVChecker needed both assumptions B \= A maysee M and A \ = 

B maysee M brings out the symmetry in the roles that might be played by A and B in an attack. 
This means that in BRUTUS, if we want the intruder to take on the role of B, we can introduce 
additional runs of A and vice-versa. As discussed in Section 2.3, different combinations of runs of A 

and B lead to different attacks (from that mentioned in [3]), one of which is presented in Figure 1. 

5.2 A General Methodology for Combined Analysis 

In general, we can think of the following two ways to combine these approaches: 

1. From Assumptions to Counterexamples: We can use RVChecker to identify crucial assump- 
tions, and then use our knowledge of these assumptions to search for counterexamples in 

BRUTUS. 

2. From Counterexamples to Assumptions: We can search for counterexamples in BRUTUS and 
use this knowledge to isolate important assumptions in RVChecker. 

In this section, we present short heuristics that are suggested by the previous example. In the next 
section, we show more examples that support these heuristics. 

5.2.1     Assumptions to Counterexamples 

To see how to move from RVChecker analysis to counterexamples in BRUTUS, observe that if an 
assumption held by principal A is both dubious and crucial for satisfaction of some property, then 

it most likely falls under one of two cases: 

1. A believes something about her own behavior; in this case, we can use BRUTUS to search for 
counterexamples in which the intruder plays the role of A by modeling extra sessions of the 
other principals. 

2. A believes something about the behavior of another principal B, in which case we allow the 
intruder to play the role of B in our analysis with BRUTUS by modeling extra sessions of A. 

In the protocols presented here, the counterexamples that were found by BRUTUS can be motivated 
in this fashion by failures found using RVChecker. For example, the extra assumptions needed for 
secrecy in Dolev-Yao point to ways in which extra sessions of A or B can be utilized to generate 

an attack; we apply this heuristic to the TMN protocol in Section 5.3. 
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5.2.2     Counterexamples to Assumptions 

In the second case, we would like to use RYChecker to determine which of a, protocol designer's 
assumptions about a protocol fail in a counterexample generated by BRUTUS. To combine the tools 
in this direction, we model the entire counterexample trace as a protocol in RYChecker; note that 
this model will have the intruder I involved as a participating principal. We then proceed to add 
assumptions about each of the principals until the goal properties (secrecy, honesty, authentication, 
etc.) become satisfied. Some of these assumptions will be about I. The assumptions held about 
I when he plays the role of principal Q will then indicate assumptions that the protocol designer 
either explicitly or implicitly made about Q and that / has used to subvert the protocol. Thus 
we can identify the faulty assumptions, which will hopefully lead to a better understanding and 
possibly a simple fix to the protocol. 

5.3    More examples: DY attack and TMN 

In this section, we show how the methodology outlined in the previous section can be applied to 
the two protocols we have studied. 

5.3.1 DY Assumptions from Attack 

Section 5.1 indicates how RYChecker can be used to guide BRUTUS by indicating which sessions 
to model. Going the other way, we can also model the attack produced by BRUTUS as a protocol 
in RYChecker and analyze this protocol to determine what assumptions about the intruder are 
necessary to satisfy the secrecy properties. Thus we model the second attack listed in Section 2 as 
a protocol with six messages, the first two between A and B and the last four between A and /, 
and attempt to satisfy the secrecy properties. In addition to the properties listed in Section 3.3.1 
and the necessary assumptions about /'s ID and public key, we find that these assumptions are 
necessary to satisfy secrecy: 

I \= I maysee M    I \= B maysee M    B \= I maysee M 

This pinpoints the assumption that both principals, particularly B must believe that it is safe for 
the recipient to see the message M, when in fact because of the lack of authentication it could 
potentially be an intruder receiving the message. This gives us some high-level insight into what 
went wrong with the design of the protocol. 

5.3.2 TMN 

We also applied both heuristics to the TMN protocol. In our analysis with RYChecker (Section 
3.3.2) we found that it was necessary either to change the protocol or allow the server S to use 

pi, 

inappropriate interpretation rules to satisfy the goal S \= A <—> B; and that to satisfy secrecy, we 
required the additional assumption that S |= A maysee Rb. So following rule 2 of our heuristic, 
we can model an extra session of S in BRUTUS and allow I to play both A and B: the result is the 
attack shown in Figure 4, in which / manages to retrieve Ra from the server. Thus we arrive at the 
conclusion that the lack of authentication in this protocol results in inappropriate interpretation of 
messages and inappropriate assumptions that can be marshalled into an attack by /. 

Going in reverse, we can also identify these interpretation rule errors and faulty assumptions 
by modeling the trace from Figure 4 as a protocol and attempting to satisfy the secrecy goals. Of 
particular interest is the secrecy of the message which I receives from S revealing Rb. To achieve the 
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goal S |= P maysee {Rb}Ri, we must satisfy the sub-goals S \= I maysee Rb and S |= S i—> I. 
The first can only be satisfied by assumption, which reveals our first broken assumption - in the 
original protocol this translates to S |= A maysee Rb, when 5 has no proof that the key is actually 
intended for A. The second sub-goal can only be satisfied by forming interpretation rules that do 
not follow the patterns specified in [6], since S must believe an unauthenticated message from I. 
It follows that in the original protocol S must believe unauthenticated messages from A and B, 
which highlights the second error in the protocol, that is, the lack of proper authentication. 

Thus, in both cases we are able to apply our heuristics to the TMN protocol, producing a more 
complete analysis through the combination of the tools than we were able to produce with either 
alone; in addition, the combination of the tools is able to catch more errors. 

6    Concluding Remarks 

In this paper, we have compared the approaches and capabilities of two cryptographic protocol 

analysis tools - BRUTUS and RVChecker - by analyzing two security protocols with known flaws. 

Neither tool isolated all of the flaws in these protocols, but each tool missed different flaws; the 
complementary nature of their approaches suggested that it might be possible to combine these 

tools resulting in a more powerful yet still fully automated approach to formal protocol analysis. 
We do not claim that the methods suggested here for combining these two approaches are rigorous 
or complete, however, these methods of combination represent a beginning. Future work could see 
how they can be formalized and extended beyond the two protocols presented. 
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